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A finite element dynamic model of a sliding link through a prismatic joint where the
prismatic joint hub is executing general planar motion is formulated. In contrast to
previously reported formulations, a finite element mesh with a fixed number of elements
is used, where the element length is constant. The time-dependent boundary conditions
manifested by the prismatic joint constraints are considered. A transition element with
variable stiffness is introduced at the interface with the joint hub. In this finite element
formulation, all the inertia coupling terms between the beam reference motions and the
local elastic deformations are considered. In addition, the model accounts for the dynamics
of the end mass as well as the associated coupling effects. Numerical simulations and
comparisons with results obtained by other methods are presented to demonstrate the
validity and accuracy of the model.
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1. INTRODUCTION

The problem of modelling the dynamics of flexible beams with prismatic joints has
attracted the attention of investigators in several areas of engineering applications.
Examples of such applications are robotic manipulators, telescopic members of loading
vehicles, and deployable space structures, in addition to other applications such as
magnetic tape drives, printing machines, travelling cables and bandsaws. Flexible members
with prismatic joints are known to produce considerable mathematical difficulty in the
dynamic modelling of such systems. The problem becomes even more difficult if the beam
is translating through a prismatic joint which is executing general planar motion. It has
become evident that a reliable dynamic model for a translating and rotating beam that
accounts for the interaction between rigid and flexible body motions is highly demanded.
Such a dynamic model is crucial to the design, performance evaluation, and control of
light-weight, high-speed, and high-precision applications.

The vibrational characteristics of a translating beam were first studied by Mote [1] in
his work on band saws. In reference [1], the dependence of the natural frequencies on the
velocity and initial tension in the band saw was reported. Other investigations were
initiated to address the problem of modelling the dynamics of axially moving beams and
links [2–5]. Space applications involving spacecraft with deployable appendages posed
another area of interest where the dynamics of axially moving beams has been investigated
[6–9]. Several other investigations [10–14] were directed to the study of the dynamic
stability of moving bands and belts.

In all of the above mentioned investigations, only the translational motion of an elastic
beam with prismatic joint was considered. Chalhoub and Ulsoy [15] investigated the effect
of the structural flexibility on the control of a robotic arm with one prismatic and two
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revolute joints. The equations were derived by using the Lagrangian approach in
conjunction with the assumed displacement approximation. Their model, however, did not
account for the inertia coupling between the rigid body motion and the elastic
deformations. Wang and Wei [16], proposed a feedback control law to minimize the
vibrations of a flexible robot arm with revolute and prismatic joints. They utilized their
earlier model [5] in addition to a prescribed rotational motion. Consequently, the effect
of the elastic motion on the reference rotational motion did not appear in their equations.
Krishnamurthy [17], extended the work of reference [16] by incorporating the dynamics
of the beam tail. The choice of the body axes, however, resulted in a dynamic model
wherein the inertia coupling between the translational motion and the elastic deformations
was ignored. That is, if one eliminates the rotational degree of freedom from the equations
of motion, the model of reference [17] is rendered uncoupled. Yuh and Young [18]
developed a dynamic model of an axially moving and rotating beam, wherein the motion
is confined to the horizontal plane. Newton’s approach was employed in developing the
equation of motion in the form of one partial differential equation. Using the assumed
modes technique, they obtained a system of linear differential equations with time varying
coefficients. It was found that the effect of the Coriolis acceleration on the elastic
deformations was partially considered in their equation of motion. Following the same
methodology of reference [4], Buffinton [19] modelled the dynamics of an elastic
manipulator with a prismatic joint, wherein the prismatic joint was modelled as a two-part
support. Recently, Al-Bedoor and Khulief [20] reported a general dynamic model for the
translating and rotating beam that utilizes the assumed modes method, and accounts for
all the interactions between rigid body motion and the elastic deformations.

Almost all the previously cited investigations have employed the assumed modes method
to describe the motion of the continuum and to convert the dynamic model into a set of
ordinary differential equations. Other investigators [21] modelled a translating and rotating
beam by a set of elastically connected massless rigid links. These formulations were
restricted to study the effects of the rigid body motion, in terms of the driving constraints,
on the elastic deformations of a translating and rotating beam. Pan et al. [22] utilized the
finite element method in modelling a flexible robot arm with prismatic and revolute joints.
They discretized the beam by a fixed number of beam elements. The mesh size was allowed
to change as a function of time in order to locate nodes at key points where the boundary
conditions can be applied. The coupling effect due to the axial motion was ignored in their
kinetic energy formulation and thus in the resulting equations of motion. Gordaninejad
et al. [23] applied the same methodology to a robot arm made of composite materials. Kim
and Gibson [24] used the finite element method to model a sliding flexible link. They
considered the part of the link extending outside the prismatic joint to be composed of
a fixed number of elements. The length of each element changes as the beam moves relative
to the joint. The same methodology of employing a constant number of elements with
variable length was also investigated by Downer and Park [25], and Stylianou and
Tabarrok [26]. Vu-Quoc and Li [27] formulated the problem with time varying boundary
conditions. They considered that the prismatic joint is moving with respect to the beam.
The time varying problem defined over the interval [0, L(t)] was converted to what they
called ‘‘constant stretched co-ordinates’’ over the interval [0, 1]. The new hypothetical
domain was then discretized by using a fixed number of elements with constant lengths
since the domain [0, 1] is not changing with time. An available finite element code was used
to simulate this problem with coefficient matrices changing at each time step.
Post-processing, as they mentioned, was needed to convert the results back into the actual
physical domain. It is noteworthy to mention here that those time varying matrices are
equivalent to the methodology of using a finite element domain with changing element
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lengths. The method of converting the domain into a fixed domain was used by Al-Bedoor
and Khulief [28] in reporting an approximate analytical solution of beam vibration during
axial motion. Recently, Al-Bedoor and Khulief [29] reported a finite element dynamic
model of a sliding and rotating flexible link using fixed number of elements with constant
lengths.

The current status of the reported approaches and methodologies indicate the following.
(a) The majority of the published studies were directed to modelling the dynamics of only
the translational motion of a sliding beam. (b) The investigations that addressed both the
translational and rotational motions were restricted to the case where the prismatic joint
hub rotates about a fixed axis. (c) Most of the reported finite element models have
employed a changeable finite element mesh by considering the element length as a function
of time. As a result of adopting a changeable finite element mesh and thus separating the
mathematical model from the physical problem, some of these models have fallen short
of accounting for all the dynamic coupling terms. In addition to the numerical difficulties
associated with the changeable finite element mesh, one must recognize another potential
problem of preserving the continuity of the nodal displacements and velocities when
interfacing the old nodes with the new ones.

In this paper, a general dynamic model for a sliding flexible link through a prismatic
joint where the prismatic joint hub is executing general planar motion is developed. The
Lagrangian approach in conjunction with the finite element technique is employed. The
finite element formulation adopts a fixed number of elements, where each finite element
has a constant length. Consequently, the formulation results in an unchangeable finite
element mesh. This feature is essential for control applications where point-sensors and
point-actuators are placed at fixed nodal points. In this formulation, the prismatic joint
hub is treated as rigid, and the nodal points housed inside it have zero displacements and
zero slopes. The time dependent boundary conditions as manifested by the prismatic joint
constraints are accounted for by imposing zero elastic displacement and velocity for each
node housed inside the hub of the prismatic joint. The element which has one of its nodes
housed inside the hub of the prismatic joint while the other node is outside the joint is
called the transition element. The transition element is neither a totally free element like
those located outside the hub of the prismatic joint nor a totally rigid element like those
completely housed inside the hub of the prismatic joint. To allow smooth transfer from
the case of flexible element to the case of rigid element and vice versa, the stiffness of the
transition element is changed as function of its free hanging length which in turn is a
function of time. Furthermore, this methodology has the advantage of using a minimum
number of elements without loss of accuracy. The model take account of all the rigid body
motions and the relative elastic deformations in their coupled format. As a result of this
formulation, studying the effects of rigid body motions on the elastic deformations and
the other way around are made possible. Numerical simulations and comparisons are
presented to demonstrate the validity and the accuracy of the model.

2. THE ELASTODYNAMIC FORMULATION

A beam with a prismatic joint hub in general planar motion, shown in Figure 1, is
considered with the following features and assumptions. (1) The prismatic joint hub is rigid
and the motion of the beam inside the prismatic joint is frictionless. (2) The beam is
inextensible and Euler–Bernoulli beam theory is adopted. (3) The gravitational potential
energy due to the elastic deformations is neglected compared to the overall reference
motion. (4) A tip mass is considered to be concentrated at the free end of the beam. The
rotary inertia of the tip mass is neglected.
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2.1.  -  

In this formulation, the Lagrangian approach is employed. Therefore, one needs to
evaluate both the kinetic and potential energy expressions. To this end, one must define
the global position of an arbitrary point on the beam. Let XY represent the inertial frame,
and the co-ordinate system x1y1 be fixed to the prismatic joint hub. The x2y2 co-ordinate
system is attached to the beam and is moving with it, but remains parallel to the x1-,
y1-axes. The beam is described by using n finite elements. A typical element i is considered
to have two nodes: namely, i and i+1. The co-ordinate system xy is the ith element
co-ordinate system defined with respect to the undeformed state. The global position of
an arbitrary point p on the ith element of the beam thus can be written as

Rp =Ro1 +Arp , (1)

where rp is the position vector of point p in the x1y1 co-ordinate system, A is the rotational
transformation matrix from the x1y1 co-ordinate system to the XY inertial reference frame
and Ro1 in the position of the x1y1 co-ordinate system in the inertial reference frame and
can be expressed as

Ro1 =XI+YJ. (2)

(A list of nomenclature is given in the Appendix.)
The position vector of point p in the x1y1 co-ordinate system can be written in the form

rp =(x1
o2 + x2

i + xp )i1 + uj1, (3)

but, from Figure 1, one can define

Si = x1
o2 + x2

i , (4)

Figure 1. The co-ordinate system of a sliding link.
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where Si defines the axial position of node i in the co-ordinate system x1y1 and is chosen
to represent the translational degree of freedom of the system. Upon substituting equation
(4) into equation (3), the position vector of point p in the body co-ordinate system x1y1

becomes

rp =(Si + xp )i1 + uj1, (5)

where u is the transverse elastic displacement of the beam at point p measured relative to
the x1y1 co-ordinate system. In order to formulate the kinetic energy expression, the
velocity vector can be written as

R� p =R� o1 +Aṙp + u� (Au )rp , (6)

where Au = 1A/1u, and ( ˙ ) denotes differentiation with respect to time.
Upon differentiation of equation (5) and carrying out some algebraic manipulation of

equation (6), the velocity vector of point p can be expressed as

R� p =6X� −sin u[u̇+S� u'+ u� (Si + xp )]+ cos u[S� − u� u]
Y� +sin u[S� − u� u]+ cos u[u̇+S� u'+ u� (Si + xp )]7, (7)

where the subscript i in the velocity term S� i has been dropped for simplicity of notation,
and (') denotes differentiation with respect to x.

2.2.        

The kinetic energy of a typical element i with mass per unit length r and length l can
be written in the form

Ui = 1
2 g

l

0

rR� T
p R� p dx. (8)

Substituting equation (7) into equation (8) yields

Ui = 1
2 g

l

0

r{[u̇+S� u'+ u� (Si + xp )]2 + [S� − u� u]2} dx

+1
2 g

l

0

r{X� 2 +Y� 2 +2[u̇+S� u'+ u� (Si + xp )]Y� cos u} dx

+1
2 g

l

0

r{−2[u̇+S� u'+ u� (Si + xp )]X� sin u} dx

+1
2 g

l

0

r{2[S� − u� u]X� cos u+2[S� − u� u]Y� sin u} dx. (9)

2.3.        

The potential energy of the system is constituted of the elastic strain energy, the
gravitational potential energy and the potential energy of the axial shortening due to the



. . -  . . 646

transverse deformations and the axial inertial forces. The elastic strain energy stored in
element i which has a flexural rigidity EI can be written in the form

Vsi = 1
2 g

l

0

EI(x)$12u
1x2%

2

dx. (10)

The gravitational potential energy due to the reference motion can be expressed as

Vgi = rgYl+ rgSil sin u+ rg(l2/2) sin u. (11)

For evaluating the axial potential energy of shortening, the amount of shortening can be
represented by

dd3−1
2(1u/1x)2 dx, (12)

while the axial inertial force that results from the reference motion of element i can be
written in the following form:

Fp =g
l

x

r[S� +X� cos u+Y� sin u− u� 2(Si + x)] dx

+ s
n

j=i+1

rjlj$S� +X� cos u+Y� sin u−0Sj +
lj
21u� 2%. (13)

The element axial shortening potential energy can then be expressed as

Vai =g
l

0

Fp dd. (14)

Evaluating the integral of equation (13) and substituting the result together with equation
(12) into equation (14), one obtains the following expression for the axial shortening
potential energy:

Vai = 1
2 g

l

0 6r[(Siu� 2 −S� −X� cos u−Y� sin u)(l− x)+ 1
2u�

2(l2 − x2)]01u
1x1

2

7 dx

−1
2(S� +X� cos u+Y� sin u) s

n

j= i+1

rjlj g
l

0 01u
1x1

2

dx

+
u� 2

2
s
n

j= i+1 0Sj +
lj
21rjlj g

l

0 01u
1x1

2

dx. (15)

2.4.     

The hub of the prismatic joint shown in Figure 1 is considered to be rigid and is
executing a general planar motion. Its contribution to the system’s kinetic energy can be
represented by

Uh = 1
2Jhu� 2 + 1

2mhX� 2 + 1
2mhY� 2, (16)
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where mh and Jh are the mass and the mass moment of inertia of the prismatic joint hub
respectively. The hub of the prismatic joint contributes also to the gravitational potential
energy of the system, by the term

Vh =mhgY. (17)

2.5.    

The end mass contributes to the dynamics of the system through its kinetic energy,
gravitational potential energy as well as its axial shortening potential energy. The end mass
is assumed to be attached to the tip node of the beam. By using an analysis similar to that
leading to equation (7), one can write the velocity vector of the end mass as

R� e =6X� −sin u[u̇e +S� u'e + u� Se]+ cos u[S� − u� ue ]
Y� +sin u[S� − u� ue ]+ cos u[u̇e +S� u'e + u� Se]7. (18)

The kinetic energy of the end mass can then be expressed as

Ue = 1
2meR� T

e R� e . (19)

Substituting equation (18) into equation (19) yields the end mass kinetic energy as

Ue = 1
2me [X� 2 +Y� 2 +S� 2 + u� 2u2

e + u̇2
e +S� 2u'2e + u� 2S2

e −2S� u� ue

+2S� u̇eu'e +2u� Seu̇e +2u� SeS� u'e +2X� cos uS� −2X� u� ue cos u+2Y� S� sin u−2Y� u� ue sin u

+2Y� u̇e cos u+2Y� S� u'e cos u+2Y� u� Se cos u

−2X� u̇e sin u−2X� S� u'e sin u−2X� u� Se sin u]. (20)

The gravitational potential energy of the end mass can be expressed as

Vge =megY+megSe sin u. (21)

By following the previously stated methodology, the axial shortening potential energy
can be approximated to the form

Vae = 1
2me (Seu� 2 −S� −X� cos u−Y� sin u)(Se −Lh )(1ue /1x)2. (22)

2.6.      

The system kinetic and potential energy expressions can be expressed, respectively, as

U= s
n

i=1

Ui +Ue +Uh (23)

and

V= s
n

i=1

(Vi +Vgi +Vai )+Vge +Vae +Vgh, (24)

where n is the number of elements comprising the beam.



. . -  . . 648

3. THE FINITE ELEMENT DISCRETIZATION

The finite element method will be utilized to discretize the elastic deformations. In the
finite element method, the deformations are represented in terms of the nodal degrees of
freedom. This can be expressed as

u(x, t)= [N(x)]{q(t)}, (25)

where [N] is a raw matrix of the shape functions which are spatially dependent, and {q}
is the vector of nodal degrees of freedom which are time dependent.

3.1.       

By utilizing the time and spatial derivatives of the elastic deformation u(x, t), the kinetic
energy of the element i can be written in the form

Ui = 1
2rlS� 2 + 1

2rlu� 2(S2
i + l2/3+Sil)+ 1

2rlX� 2 + 1
2rlY� 2 + rlu� SiY� cos u

−rlu� SiX� sin u+ rlS� X� cos u+ rlS� Y� sin u+ 1
2l

2ru� Y� cos u− 1
2rl2u� X� sin u

+1
2 g

l

0

r{q̇}T[N]T[N]{q̇} dx+ 1
2u�

2{q}T g
l

0

r[N]T[N] dx{q}

+1
2 S� 2g

l

0

r{q}T[N']T[N']{q} dx+S� g
l

0

r{q}T[N']T[N]{q̇} dx

−u� S� g
l

0

r[N] dx{q}+Siu� g
l

0

r[N] dx{q̇}+ u� g
l

0

rx[N] dx{q̇}

+u� S� Si g
l

0

r[N'] dx{q}+ u� S� g
l

0

rx[N'] dx{q}+Y� cos u g
l

0

r[N] dx{q̇}

+Y� S� cos u g
l

0

r[N'] dx{q}−X� sin u g
l

0

r[N] dx{q̇}−X� S� sin u g
l

0

r[N'] dx{q}

− u� X� cos u g
l

0

r[N] dx{q}− u� Y� sin u g
l

0

r[N] dx{q}, (26)

and the bending strain energy of element i can be written as

Vsi = 1
2 g

l

0

EI(x)[{q}T[N0]T[N0]{q}] dx, (27)
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while the axial shortening potential energy of element i can be written in the form

Vai = 1
2(Siu� 2 −S� −X� cos u−Y� sin u){q}T g

l

0

r[N']T[N'](l− x) dx{q}

+1
4u�

2{q}T g
l

0

r[N']T[N'](l2 − x2) dx{q}

+ 1
2 s

n

j= i+1 0Sj +
lj
21rjlju� 2{q}T g

l

0

[N']T[N'] dx{q}

−1
2(S� +X� cos u+Y� sin u) s

n

j= i+1

rjlj{q}T g
l

0

[N']T[N']{q}. (28)

3.2.   

The Lagrangian approach is employed in deriving the equations of motion at the
element level. By utilizing the kinetic and potential energy expressions, equations (26–28)
in the variational form of the Lagrange’s equation, and performing the required
differentiations and algebraic manipulations, the equations of motion at the element level
can be written in the following compact form:

mXX mXY mXu mXS [mXq ] X� 0 0 0 0 0

mYX mYY mYu mYS [mYq ] Y� 0 0 0 0 0

muX muY muu muS [muq ] u� +S� 0 0 0 0 0G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l
mSX mSY mSu mSS [mSq ] S� 0 0 0 0 0

[mqX ] [mqY ] [mqu ] [mqS ] [mqq ] {q̈} 0 0 0 0 [G]

X� 0 0 0 0 0 X

Y� 0 0 0 0 0 Y

× u� + 0 0 0 0 0 ug
G

G

G

G

F

f

h
G

G

G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j
S� 0 0 0 0 0 Si

{q̇} 0 0 0 0 [kqq ] {q}

QX FX

QY FY

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

+ Qu = Fu , (29)

QS FS

{Qq} {Fq}

where

mXX =mYY = rl+mh , mXY =0, (30)

mXS = rl cos u−sin u[b]{q}, mYS = rl sin u+cos u[b]{q}, (31)
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[mXq ]=−sin u[a], [mYq ]= cos u[a]; muS =[Si [b]+ [d]− [a]]{q},

[muq ]=Si [a]+ [e], (32, 33)

mSS = rl+ {q}T[B]{q}, [mSq ]= {q}T[C]; [mqq ]= [M], [G]= [C]T − [C],

(34, 35)

mXu =−[rl sin u(Si + 1
2l)+ cos u[a]{q}], mYu = rl cos u(Si + 1

2l)− sin u[a]{q},

(36, 37)
muu = Jh + rl(S2

i + l2/3+Sil)+ {q}T[[M]−Si [ka1]− 1
2[ka2]]{q}

− s
n

j= i+1

rjlj
ri 0Sj +

lj
21{q}T[B]{q}, (38)

[kqq ]= [K]−S� 2[B]− u� 20[M]−Si [ka1]− 1
2[ka2]− s

n

j= i+1

rjlj
ri 0Sj +

lj
21[B]1

−(S� +X� cos u+Y� sin u)$[ka1]+ s
n

j= i+1

rjlj
ri

[B]%, (39)

QX =−S� u� (2rl sin u+cos u[b]{q})−S� sin u[b]{q̇}

+u� 2(sin u[a]{q}− rl(Si + l/2) cos u)−2u� cos u[a]{q̇}, (40)

QY =S� u� (2rl cos u−sin u[b]{q})+S� cos u[b]{q̇}

−u� 2(cos u[a]{q}+ rl(Si + l/2) sin u)−2u� sin u[a]{q̇}+ rgl+mhg, (41)

Qu =S� u� $2rl(Si + l/2)− {q}T0[ka1]+ s
n

j= i+1

rjlj
ri

[B]1{q}%+S� (Si [b]+ [d]){q̇}

+S� 2[b]{q}+2u� {q}T0[M]−Si [ka1]− 1
2[ka2]− s

n

j= i+1

rjlj
ri

[B]1{q̇}

+S� Y� sin u[b]{q}+S� X� cos u[b]{q}+ rgl cos u(Si + l/2)

+1
2(X� sin u−Y� cos u){q}T[ka1]{q}+ 1

2(X� sin u−Y� cos u) s
n

j= i+1

rjlj
ri

{q}T[B]{q},

(42)

QS = {q̇}T[C]{q̇}+2S� {q}T[B]{q̇}+ u� ([d]+Si [b]−2[a]){q̇}

−rlu� 2[Si + l/2]+ rgl sin u+ 1
2u�

2{q}T[ka1]{q}−Y� u� sin u[b]{q}

−X� u� cos u[b]{q}+Y� cos u[b]{q̇}−X� sin u[b]{q̇}, (43)

{Qq}=S� u� [2[a]−Si [b]− [d]]T +S� X� sin u[b]T −S� Y� cos u[b]T. (44)
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The element coefficient matrices and vectors are

[M]=g
l

0

r[N]T[N] dx, [K]=g
l

0

EI(x)[N0]T[N0] dx, (45)

[B]=g
l

0

r[N']T[N'] dx, [C]=g
l

0

r[N']T[N] dx, (46)

[ka1]=g
l

0

r(l− x)[N']T[N'] dx, [ka2]=g
l

0

r(l2 − x2)[N']T[N'] dx, (47)

[a]=g
l

0

r[N] dx, [b]=g
l

0

r[N'] dx; [d]=g
l

0

rx[N'] dx, [e]=g
l

0

rx[N] dx.

(48, 49)

In equation (29), one can recognize the non-linear inertia coupling between the rigid
body motions and the elastic deformations. The entries mXX and mYY are the assembly
translational inertia, the entry muu is the rotational inertia of the system, mSS is the axial
inertia of the system and [mqq ] is the elastic mass matrix. The contribution of the elastic
deformations to both the rotational and translational inertia terms mXX , mYY , muu and mSS

is recognized in equations (30–35). The entries mXu , mXS , mXq , mYu , mYS , mYq , muS , muq and
mSq represent the non-linear inertia coupling between the beam reference motions and the
local elastic deformations. The matrix [G] is the gyrosopic matrix, and [kqq ] is the
generalized stiffness matrix. The entries QX , QY , Qu , QS and {Qq} of the non-linear vector
represent inertia forces that result from the quadratic velocity terms, Coriolis accelerations,
as well as the gravitational effects. The right side of equation (29) represents the vector
of external forces and moments.

The contribution of the end mass to the dynamics of the system can be included by
applying Lagrange’s equation to the energy expressions of the end mass, equations (20–22).
The result after, differentiation and algebraic manipulation, can be represented in the
matrix form

Qe
X

me
XX me

XY me
Xu me

XS me
Xqe

X�
Qe

Y
0

me
YY me

Yu me
YS me

Yqe
Y�

Qe
u

0

me
uu me

uS me
uqe

u� +
Qe

S
= 0 , (50)g

G

G

G

G

F

f

h
G

G

G

G

J

j

G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j
Symmetric me

SS me
Sqe

S�
Qe

qe

0

m'qeqe q̈e Qe
q'e

0

where

me
XX =me

YY =me , me
XY =0, (51)

me
Xu =−me (qe cos u+Se sin u), mYu =me (Se cos u− qe sin u), (52)

me
XS =me (cos u− q'e sin u), me

YS =me (sin u+ q'e cos u), (53)

me
Xqe

=−me sin u, me
Yqe

=me cos u, (54)
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me
uu =me [q2

e +S2
e −Se (Se −Lh )q'2e ], me

uS =me (Seq'e − qe ), (55)

me
uqe

=meSe , me
Sqe

=meq'e ; me
SS =me (1+ q'2e ), me

qq =me , (56, 57)

Qe
X =−meS� u� (2 sin u+ q'e cos u)+meu� 2(qe sin u−Se cos u)

−2meu� q̇e cos u−meS� q̇'e sin u, (58)

Qe
Y =meS� u� (2 cos u− q'e sin u)−meu� 2(qe cos u+Se sin u)

−2meu� q̇e sin u+meS� q̇'e cos u+meg, (59)

Qe
u =meS� u� [Se −(2Se −Lh )q'2e ]+meS� 2q'e +meSeS� q̇'e +2meu� qeq̇e −2meSeu� (Se −Lh )q'e q̇'e

+megSe cos u+meY� S� q'e sin u+meX� S� q'e cos u

+1
2meX� sin u(Se −Lh )q'2e − 1

2meY� cos u(Se −Lh )q'2e , (60)

Qe
S =−2meu� q̇e +2meS� q'e q̇'e +meq̇eq̇'e +meu� Seq̇'e −meSeu� 2 +meg sin u

+1
2meu� 2(2Se −Lh )q'2e +meY� q̇'e cos u−meY� u� q'e sin u−meX� q̇'e sin u

−meX� u� q'e cos u− 1
2me cos uX� q'2e − 1

2me sin uY� q'2e , (61)

Qe
qe
=2meS� u� +meS� q̇'e −meqeu� 2, (62)

Qe
q'e =me [Seu� 2 −S� −X� cos u−Y� sin u](Se −Lh )q'e

+meX� S� sin u−meY� S� cos u−meSeS� u� −meS� 2q'e . (63)

The entries of equation (50) are to be added to the other elements of the corresponding
generalized matrices in the equations of motion of the whole system. One can recognize
the non-linear coupling terms due to the effect of the end mass, as given by equation (50).
It is noteworthy to mention that, as a result of the consistent inclusion of the end mass
dynamics from the start of the formulation the above coupling terms are obtained. Such
terms were suppressed in the previously published formulations where the end mass
contribution was simply added to the mass matrix at locations of the corresponding entries
of the associated degrees of freedom.

4. NUMERICAL SIMULATION

4.1.  

By utilizing the constrained form of Lagrange’s equations, the elastodynamic model of
the multibody system can be written as

[M� ]{q̈}+[G� ]{q̇}+[K� ]{q}+ {Q�}+[J]T{l}= {F�}, (64)

where [M� ] is the non-linear inertia matrix for the coupled rigid and elastic degrees of
freedom, global [G� ] is the gyroscopic damping matrix, [K� ] is the generalized stiffness matrix,
{Q�} is the quadratic velocity vector that includes the Coriolis and the gravitational force
components, [J] is the Jacobian matrix of the prismatic joint reference constraints and {F�}
is the external force vector. The generalized co-ordinate vector {q} is defined as

{q}=[qT
r , qT

e ]T, (65)

where qr is the vector of unconstrained rigid body degrees of freedom (three for the hub
and three for the reference motion of the beam), and qe is the vector of nodal degrees of
freedom of the elastic beam.
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Figure 2. Schematic diagram of a planar mechanism.

Once the initial conditions are specified, static equilibrium analysis is performed to
obtain the initial values of the elastic coordinates that are compatible with the assigned
initial deflection shape. Then, equation (64) can be integrated forward in time by using
integration algorithms similar to those of reference [30], and the system’s time response
thus can be predicted.

In this computational scheme, the effect of the prismatic joint constraints as imposed
on the elastic beam is twofold. First is the effect on the beam reference motions by reducing
them to one relative motion with respect to the rigid hub. This part is handled by the
Jacobian matrix of the constraints on the multibody system. Second is the effect on the
elastic deformations of the nodes that become enclosed by the hub. In practice the
clearance between the contact surfaces within the prismatic joint is very small. Therefore,
the elastic deformations of the enclosed nodes are eventually suppressed or reduced to
vanishingly small values. In other words, the enclosed element will behave as a rigid
element: i.e., one that has a reference motion with negligible local deformations.

The computational idea of the transition element is introduced to account for the
aforementioned second effect of the prismatic joint constraints. The transition element is
an element which is partially enclosed by the hub, and may have any numbering in the
finite element configuration. One may add that there is no specific element called the
transition element. However, at any given instant of time, one has three types of elements:
namely, a type of element which is not at any contact with the prismatic joint hub (treated
as a normal finite element), another type of element which is completely housed inside the
hub (treated as a rigid element), and the third type which is in a transition stage: i.e.,
partially in contact with the hub (treated as a transitional finite element). If one considers
the enclosed portion of the transition element to behave in a rigid manner then the
remaining portion of the element will deform with a varying stiffness according to its
changeable overhanging length outside the hub. Consequently, the contribution of the
transition element to the flexibility of whole beam becomes a function of its unconstrained
length (i.e., the portion of its length that extends outside the joint hub). For instance, in
the case of retraction, the stiffness of the transition element increases as its unconstrained
length decreases.

It is noteworthy to mention that the use of a multibody formulation of an interconnected
system of rigid and flexible bodies has facilitated the computations of such a complicated
problem. In this regard, the beam rigid-body or reference motion is accounted for by the
inclusion of the rigid body generalized co-ordinates {qr}. In addition, the full dimension
of the elastic co-ordinates {qe} is also maintained throughout the formulation: that is, no
elements are eliminated from the finite element mesh once they become enclosed by the
rigid hub. In this case, the enormous numerical book-keeping which may be necessary with
other variable length methods is no longer required.
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T 1

Flexible beam data

Property Symbol Value

Length (m) Lt 3·6
Mass per unit length (kg/m) r 4·015
Cross-section (mm) 152·4×9·52
Flexural rigidity (Nm2) EI 756·65

The numerical technique adopted in this scheme calls for freezing the elastic degrees of
freedom of the enclosed nodes by filling out zeros in their corresponding entries for all
coefficient matrices and ones for the corresponding diagonal entries of the mass matrix
[31, 32]. In this case, the very small elastic deformations are approximated by zeros. The
full dimension of the model is preserved, and no additional numerical book-keeping is
necessary, since the nodal undeformed locations are known with respect to the local beam
axis.

4.2.  

In this numerical simulation, a planar arm with one prismatic and two revolute joints,
shown in Figure 2, is considered. The assembly consists of a flexible link sliding through
a rigid prismatic joint hub. The hub is attached by a revolute joint to a rigid shoulder
which, in turn, is attached to the base by another revolute joint. The flexible link is a
uniform slender beam similar to that used in reference [33]. The beam is made of aluminum
with data shown in Table 1.

Hermitian shape functions are used to describe the Euler–Bernoulli finite beam element
and the beam is discretized into four equal beam elements. The finite element mesh
configuration of the elastic beam during deployment is shown in Figure 3. In this case,
the numerical status of the transition element was assigned to any element which is
partially enclosed by the hub during deployment. The detailed expressions for the
elemental matrices and vectors can be found in reference [29].

Figure 3. Extending beam at different points in time showing the transition element.
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Figure 4. Tip deflection of a deploying beam; v=0·3 m/s. ——, AMM; · · · ·, FEM.

To simulate the case of an axially moving link, the motion of the hub is constrained
such that no rotations are allowed. The flexible link with initial length of 1·8 m outside
the hub of the prismatic joint is given an initial tip deflection of −5 mm. The link is then
deployed at an axial velocity of 0·3 m/s and the tip deflections are compared with the
results of the assumed modes solution [20] in Figure 4. Excellent agreement between the
two methods is shown. The tip deflections of the retracting link from the initial length of
3 m outside the prismatic joint are compared with those given by the assumed modes
solution in Figure 5. Figure 6 shows the effect of the end mass on the tip deflections of
the deploying beam, where, as expected, the end mass reduces the frequency of oscillation
and slightly increases the amplitude. It is noteworthy to mention that the assumed modes
solutions of reference [20] were verified by using comparisons with the analytical solutions
of references [7, 28] for both deployment and retraction of the beam motions. Excellent
agreement between the results were reported in reference [28].

The case of axially moving link which is rotating about a fixed axis is simulated by
preventing the rotation u1 of the shoulder revolute joint. The tip deflections of the axially
moving and rotating link in the two cases of deployment and retraction are compared to

Figure 5. As Figure 4 but for retracting beam.
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Figure 6. Tip deflection of a deploying beam; v=0·3 m/s. ——, with 2 kg end mass: · · · ·, without end mass.

the results of the assumed modes method in Figures 7 and 8, respectively. The comparison
shows good agreement between the two solutions.

The capabilities of the model can now be explored by simulating the following two
motion configurations: 1, a sliding link through a prismatic joint hub that executes
curvilinear translation; 2, a sliding link through a prismatic joint hub that executes general
planar motion.

Figure 7. Tip deflection of a deploying and rotating beam; v=0·3 m/s and w=0·1 rad/s. ——, FEM;
· · · ·, AMM.

Figure 8. As Figure 7 but for retracting and rotating beam.
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Figure 9. Planar configuration 1.

Figure 10. Tip deflection while moving from P0 to P1. ——, with 2 kg end mass; · · · ·, without end mass.

The first configuration, shown in Figure 9, is obtained by allowing rotation about both
the base and the shoulder joints. In this simulation, the link deploys for 1 m, while the
base joint is rotating an angle u1 = p/2 and the shoulder joint is rotating an angle
u2 =−p/2, simultaneously in four seconds. The tip deflections of the link as it moves from
position P0 to position P1 are shown in Figure 10 for the two cases with and without end
mass. For the reverse motion from position P1 to position P0, the tip deflections are shown
in Figure 11.

Finally, a general planar motion configuration as shown in Figure 12 is presented. In
the simulation, the beam deploys 1 m, while the base and shoulder joints rotate through
angles u1 = p/2 and u2 = p/2 in four seconds, respectively. The tip deflections for the
forward motion from P0 to P2, and the reverse motion from P2 to P0 are displayed in
Figures 13 and 14 respectively.

5. CONCLUSIONS

A finite element dynamic model of a sliding link through a prismatic joint where the
prismatic joint hub is executing general planar motion is established. The model presents
an attractive formulation which takes account of the general planar motion of the
prismatic joint hub. All other reported models are confined to the case where the joint hub
rotates about a fixed axis in space. Unlike in previous investigations, a finite element mesh
with a fixed number of elements, is used where the element length is constant. The
time-dependent boundary conditions manifested by the prismatic joint constraints are
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Figure 11. As Figure 10 but moving from P1 to P0.

Figure 12. Planar configuration 2.

considered. A transition element with variable stiffness is introduced at the interface with
the joint hub. In this finite element formulation, all the inertia coupling terms between the
beam reference motions and the local elastic deformations are considered. In addition,
the model accounts for the dynamics of the end mass as well as the associated coupling
effects.

The elastodynamic model developed in this paper is applicable to the general case of
a flexible beam sliding relative to its rotating prismatic joint hub. In this formulation, the
hub is treated as rigid. However, the hub dynamics is taken into consideration, where the
general planar motion of the hub is accounted for. The elastic motion of the beam is
represented by the small elastic deformations within the assumptions of linear theory of
elasticity. The beam can either be kinematically driven or driven by a prescribed forcing
functions.

The model offers the following advantages over the previously reported models that
utilize a changeable finite element mesh.

1. The fixed nodal locations provide an attractive feature for control applications where
point-sensors and point-actuators need to be placed at specified nodal points.

2. It eliminates the need for regenerating the coefficient matrices of the whole finite
element model at each time-step. Here, only the stiffness matrix of a transition element
is updated at each time-step.

3. It avoids the numerical difficulties associated with the continuity conditions when
interfacing the displacements and velocities of the new nodes with the old ones. In this
model, nodal points belong to an unchangeable finite element mesh.

4. It is more oriented to be integrated into a general dynamic analysis code.
The numerical simulations and comparisons with results of other methods have

demonstrated the validity, accuracy and versatility of the developed scheme.
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Figure 13. Tip deflection while moving from P0 to P2. ——, with 2 kg end mass; · · · ·, without end mass.

Figure 14. As Figure 13 but moving from P2 to P0.
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APPENDIX: NOMENCLATURE

A Rotational transformation matrix.
Au Derivative of the transformation matrix.
C Gyroscopic matrix.
EI Flexural rigidity.
FS Axial external force.
Fu Rotational external force.
Fq Nodal external forces.
FX external force in X-direction.
FY external force in Y-direction.
G Gyroscopic matrix.
K Strain stiffness matrix.
kqq Generalized stiffness matrix.
ka Rotational stiffness matrix.
L Lagrangian function.
Lh Hub length.
l Finite element length.
mqq Consistent mass matrix.
mSq Inertial coupling vector.
mSS Axial inertia.
muu Rotational inertia.
mXX X-translational inertia.
mYY Y-translational inertia.
me End mass.
N Shape functions.
n Number of finite elements.
Q nonlinear force vector.
qe Vector of nodal degrees of freedom.
qr Vector of reference degrees of freedom.
R Position vector in the inertial frame.
Si The axial location of node i.
U Kinetic energy.
u Elastic displacement.
V Potential energy.
XY Inertial reference frame.
xy Body fixed axes.
xiyi Element co-ordinate system.
r Mass per unit length.
d Axial shortening due to bending deformations.


